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Abskact. We construct semiscalar linear representntionionsof Lhe inhomogeneous Lorenu group 
by considering the invariance of linear propagation equations. There is only one semiscalar 
representation, and the most general linear propugation equation that admits this Lorentz 
representation is a telegmpherlMnxwell-Cltwneo type equation. whose elementary solutions 
propngate at the speed of light. Under a Lorentz boost along the x’ axis, the propagated field 
variable uansforms as U’ = Uexpq[y(v)(vx’ - czt) + c2t]. If one imposes U‘ = U, then the 
Lorentz boost of the propagation equation acquires a velocity-dependent convection-+ term. 
In the Newtonian limit e + m, ,the equation reduces to Lhe Fourier heat equation, and previous 
results on semisdar represenmtions of the Galilean group are regnined. 

1. Introduction 

Consider the general linear propagation equation 

A’”(x)U,,, + B”(x)U,, + D(x)U = 0 (1) 
where p, U,. . . = 0, 1,. . . , n, and x’ = ( c t , ~ ’ ) ,  with i, j ,  . . . = 1,. . . , R, and U+ = 
a U / a x f .  Special, homogeneous cases of (1) include: the wave equation 

(2) 

(3) 

-2 glLvU,pv -c U,,, + AU = 0 

where gPy is the Minkowski metric tensor and A is the Laplacian; the Fourier heat equation 

AU - 2qU.j = 0 

the telegrapher (or damped-wave) equation and the Maxwell-Cattaneo heat equation [l], 
both of which have the form 

(4) 
Wave equation (2) is manifestly Lorentz invariant. The Fourier heat equation (3) turns out 
to be invariant under the Galilean boost 

2‘ = x - V t  

-w-’U,tj + AU - 2qU.t = 0. 

(5) 
only if the temperature U obeys the transformation law [2,3] 

q = constant. 1 2  U’ = Uexpq[z.  v - Tu t ]  
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This multiplier representation of the Galilean group is reminiscent of the phase 
transformation of the Schriidinger wavefunction under Galilean boost [4]. 

If, in contrast, one insists on physical grounds that temperature must be an invariant 
under velocity boosts (see, for example, [5,6] for discussion of this point), then t h i s  result 
shows that the Fourier heat equation cannot be invariant under Galilean transformations 
(except in the trivial case q = 0). Indeed, invariance of U implies that (3) transforms as 
follows under a Galilean boost (5): 

(7) 
In other words, if temperature is invariant, then the boosted heat equation acquires a velocity- 
dependent convection term. In fact, we can run the argument backwards, and use the 
transformation law (6) to remove a convection term from the heat equation (7). This gives 
a group-theoretic basis for a well known transformation of variables [7]. 

In this paper we investigate the Lorentz transformation of the linear propagation 
equation (1) (with the Galilean transformation arising as the limiting case c + CO). In 
section 2 we define semiscalar representations as those Lorentz representations for which 
U is a scalar under translations and rotations, but not necessarily under boosts. We show 
that there is a unique such proper representation. For a Lorentz boost along the x’ axis 
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A‘U’ - Zq’U.;, + Z ~ ’ V  * V‘U’ = 0 U‘ = U, 4‘ = q. 

x’l = y(u)(x’ - u t )  y(7J) (8) 

we find that 

U’ = Uexpq[y(u)(vx’ - c’t) +c2t].  

-c-’U,,~ + AU - 2qU,* + rU = 0 

(9) 

(10) 

and we consider. the boost of (10) when U’ = U is imposed. The Galilean case of (10) 
is just the Fourier,heat equation (3) (with source term rU), while the Galilean temperature 
transformation (6) arises from (9) as c + CO. 

Finally, in section 3 we show that Lorentz invariance reduces (1) to the form 

q.  r =constant 

2. Semiscalar representations of the Lorentz group 

We use the Lie theory [2,3,8] and write symmetry generators of equation (1) in the form 

The symmetry Lie algebra of any equation (1) contains an infinite-dimensional ideal spanned 
by 

(12) 

is an arbihary solution of the equation (1) in question. In what follows, we will 

a xx = X(X)- au 
where 
consider the quotient algebra by this ideal. 

Theoreml. The general form of symmetry operator (11) for the linear propagation 
equation (1) is 

Our starting poiilt is an important but little known result [3,8]: 
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satisfies (1). Hence the quotient algebra by the ideal (12) consists of the symmetry where 
generators of the form 

Consider now the inhomogeneous Lorentz group. It consists of the spacetime 
translations and space rotations generated by 

and the Lorentz boosts generated by 

For the symmetry analysis of (I), Lorentz transformations of spacetime 

X’U = f ” ( x , a )  (16) 

where a is a group parameter, are extended to the propagated field variable U as follows. 

U‘ = F(x,  a)U. (17) 

By theorem 1, this is, in fact, the most general allowed form of transformation of U ,  since 
it is generated by an operator of the form (13). where 

 if^ F ( x , a )  = 1, the variable U is said to be scalar under the corresponding 
transformation (16). Since equation (1) is linear and homogeneous it admits the dilation 
group with the generator 

a 
au z=u--. 

We make the following definition (cf the similar definition for the Galilean group in [Zl): 
Defmition. An extension (17) of the Lorentz group to (x”. U)-space is called a semiscalar 
linear representation if the variable U is a scalar under spacetime translations and space 
rotations. Thus the infinitesimal generators of a semiscalar representation of the Lorentz 
group have the form (14) and 

a x i a  a 
ax1 cz at au Y: = t- + -- + &(x)L’-. 

In the particular case A ; ( x )  = 0, the representation is said to be scab 

One can readily carry over the classification of semiscalar representations of the Galilean 
group [Z] to the Lorentz group. The result is as follows. 

Theorem 2. There exist two non-similar semiscalar linear representations of the Lorentz 
group: the scalar representation defined by the generators (14)-(15), and the proper 
semiscalar representation with the generators 

. a  . a  a x i j = x J - - x ‘ -  z=u-  au 
a x -- - ax@ ax1 ax) 
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Note that the constant q is the same for all Y;. Furthermore, one can scale q out of (19) 
by the dilation f' = qt ,  x" = qx'. We can find the transformation of the propagated field 
variable U under the Lorentz boosts of (19), e.g. for i = 1. The operator Y; leaves 
invariant the coordinates x2, . . . , x" while the group transformations (16). (17) of t ,  x ' ,  U 
are determined by the following Lie equations: 

N H Ibragimov and R Maortens 

dt' x" 
d a  c2 t'l.=o = t - -_  - 

dx" I1 1 x l.=o = x _-  - t' 
da 

dU' 
da 

qx"U' U'la=0 = U. _ = _  

It follows that 

f' = f cosh (f) + 2 sinh (E) 
C C 

x" =x'cosh(f)+crsinh(:) 

U' = U exp -q [cx' sinh (:) + c2t cosh (E) - c' t ] .  
C 

By introducing the velocity U of the brentz boost: 
a 

U = -ctanh(_) 

one can rewrite the transformations (20) in the form (8), (9): ' 

t' = y(u)  ( t  - $) x' = y(u) (x '  - ut)  

U' = U expq[y(u)(ux' - c2t) + c'r]. 

3. Lorentz invariant propagation equations 

Now we can establish the restrictions on (1) which follow when it is invariant under the 
Lie algebra spanned by (lS), (19): 
Theorem 3. The most general linear propagation equation (1) admitting the semiscalar 
representation of the Lorentz group generated by (18),'(19) is (lo), i.e. 

-c-*U,,, + AU - 2qU.f + rU = 0. 

Proof. Invariance under the generators X, and Z of (18) shows that the coefficients 
AF", Er, D of (1) must be constants. Invariance under the rotation generators Xi, then 
diagonalizes A"" and forces A'] = A1'6'j, B' = 0, so that (1) is reduced to the form [Z]: 

(21) 
Consider now invariance under U;. After prolongation 12, 81 to the derivatives involved in 
(U), the operator has the form: 

A"U,It + A"AU + BOU,, + DU = 0 Am, A", Bo, D =constant. 

a x 'a  a a Y,"=. t -+- - -qqx'U-- (U. i+qx'u , , ) -  
axi czar au a U,, 
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Invariance of (21) under Lorentz boost is given by the 'infinitesimal' condition: 

T(A*u.,, + A"AU + BOU,, + DU) = o 

A" + c - 2 ~ L l  = o BO + = o 

when (21) holds 
and using (22) this yields 

which leads to (IO) on rescaling AIL to 1. 
It follows that the telegrapher-type equation, with the phase speed of plane-wave 

solutions equal to the speed of light, is the most general Lorentz invariant propagation 
equation. Note that the Lorentz invariant equation (10) can only be considered as a 
Maxwell-Cattaneo heat equation if the phase speed of high-frequency thermal signals is c, 
which can be the case for radiative heat transfer [9]. For other relativistic heat propagation 
problems, with sub-luminal thermal signals, (10) is not a physical heat equation. 

The propagated field U must transform as (9) under a Lorentz boost. As in the Galilean 
case discussed in section 1, it follows that if one demands invariance of U on physical 
grounds, then the equation (IO) cannot be invariant under Lorentz transformation (except 
in the trivial case q = 0). In fact, the Lorentz boost of (IO) also acquires a convection-type 
term in the case that U is assumed invariant (scalar representation); i.e. under a Lorentz 
boost along X I ,  (IO) becomes 

-c U,,,,, + A'U' - Zq'U,;, + Zq'uU,',, + rU' = 0 
This generalizes the corresponding Galilean boost (7) of the Fourier heat equation-with 
the additional feature that under a Lorentz boost the diffusion-type coefficient q is no longer 
an invariant when U is invariant The convection-type term in (23) may be removed by the 
transformation (9), thus generalizing the corresponding non-relativistic procedure. Thus a 
group-theoretic approach gives rise to a method of solving equations of the type (23): any 
solution of (IO) may be transformed via (9) into a solution of (23). 

(23) -2 I U' = U, q' = y(u)q. 
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